Master Theorem | Master Theorem Examples

Spread the love

Master Theorem-

 

Master’s Theorem is a popular method for solving the recurrence relations.

 

Master’s theorem solves recurrence relations of the form-

 

 

Here, a >= 1, b > 1, k >= 0 and p is a real number.

 

Master Theorem Cases-

 

To solve recurrence relations using Master’s theorem, we compare a with bk.

Then, we follow the following cases-

 

Case-01:

 

If a > bk, then T(n) = θ (nlogba)

 

Case-02:

 

If a = band

  • If p < -1, then T(n) = θ (nlogba)
  • If p = -1, then T(n) = θ (nlogba.log2n)
  • If p > -1, then T(n) = θ (nlogba.logp+1n)

 

Case-03:

 

If a < band

  • If p < 0,  then T(n) = O (nk)
  • If p >= 0, then T(n) = θ (nklogpn)

 

PRACTICE PROBLEMS BASED ON MASTER THEOREM-

 

Problem-01:

 

Solve the following recurrence relation using Master’s theorem-

T(n) = 3T(n/2) + n2

 

Solution-

 

We compare the given recurrence relation with T(n) = aT(n/b) + θ (nklogpn).

Then, we have-

a = 3

b = 2

k = 2

p = 0

 

Now, a = 3 and bk = 22 = 4.

Clearly, a < bk.

So, we follow case-03.

 

Since p = 0, so we have-

T(n) = θ (nklogpn)

T(n) = θ (n2log0n)

 

Thus,

T(n) = θ (n2)

 

Problem-02:

 

Solve the following recurrence relation using Master’s theorem-

T(n) = 2T(n/2) + nlogn

 

Solution-

 

We compare the given recurrence relation with T(n) = aT(n/b) + θ (nklogpn).

Then, we have-

a = 2

b = 2

k = 1

p = 1

 

Now, a = 2 and bk = 21 = 2.

Clearly, a = bk.

So, we follow case-02.

 

Since p = 1, so we have-

T(n) = θ (nlogba.logp+1n)

T(n) = θ (nlog22.log1+1n)

 

Thus,

T(n) = θ (nlog2n)

 

Problem-03:

 

Solve the following recurrence relation using Master’s theorem-

T(n) = 2T(n/4) + n0.51

 

Solution-

 

We compare the given recurrence relation with T(n) = aT(n/b) + θ (nklogpn).

Then, we have-

a = 2

b = 4

k = 0.51

p = 0

 

Now, a = 2 and bk = 40.51 = 2.0279.

Clearly, a < bk.

So, we follow case-03.

 

Since p = 0, so we have-

T(n) = θ (nklogpn)

T(n) = θ (n0.51log0n)

 

Thus,

T(n) = θ (n0.51)

 

Problem-04:

 

Solve the following recurrence relation using Master’s theorem-

T(n) = √2T(n/2) + logn

 

Solution-

 

We compare the given recurrence relation with T(n) = aT(n/b) + θ (nklogpn).

Then, we have-

a = √2

b = 2

k = 0

p = 1

 

Now, a = √2 = 1.414 and bk = 20 = 1.

Clearly, a > bk.

So, we follow case-01.

 

So, we have-

T(n) = θ (nlogba)

T(n) = θ (nlog2√2)

T(n) = θ (n1/2)

 

Thus,

T(n) = θ (√n)

 

Problem-05:

 

Solve the following recurrence relation using Master’s theorem-

T(n) = 8T(n/4) – n2logn

 

Solution-

 

  • The given recurrence relation does not correspond to the general form of Master’s theorem.
  • So, it can not be solved using Master’s theorem.

 

Problem-06:

 

Solve the following recurrence relation using Master’s theorem-

T(n) = 3T(n/3) + n/2

 

Solution-

 

  • We write the given recurrence relation as T(n) = 3T(n/3) + n.
  • This is because in the general form, we have θ for function f(n) which hides constants in it.
  • Now, we can easily apply Master’s theorem.

 

We compare the given recurrence relation with T(n) = aT(n/b) + θ (nklogpn).

Then, we have-

a = 3

b = 3

k = 1

p = 0

 

Now, a = 3 and bk = 31 = 3.

Clearly, a = bk.

So, we follow case-02.

 

Since p = 0, so we have-

T(n) = θ (nlogba.logp+1n)

T(n) = θ (nlog33.log0+1n)

T(n) = θ (n1.log1n)

 

Thus,

T(n) = θ (nlogn)

 

Problem-07:

 

Form a recurrence relation for the following code and solve it using Master’s theorem-

 

A(n)
{
   if(n<=1)
     return 1;
   else
     return A(√n);
}

 

Solution-

 

  • We write a recurrence relation for the given code as T(n) = T(n) + 1.
  • Here 1 = Constant time taken for comparing and returning the value.
  • We can not directly apply Master’s Theorem on this recurrence relation.
  • This is because it does not correspond to the general form of Master’s theorem.
  • However, we can modify and bring it in the general form to apply Master’s theorem.

 

Let-

n = 2m    ……(1)

Then-

T(2m) = T(2m/2) + 1

 

Now, let T(2m) = S(m), then T(2m/2) = S(m/2)

 

So, we have-

S(m) = S(m/2) +1

Now, we can easily apply Master’s Theorem.

 

We compare the given recurrence relation with S(m) = aS(m/b) + θ (mklogpm).

Then, we have-

a = 1

b = 2

k = 0

p = 0

 

Now, a = 1 and bk = 20 = 1.

Clearly, a = bk.

So, we follow case-02.

 

Since p = 0, so we have-

S(m) = θ (mlogba.logp+1m)

S(m) = θ (mlog21.log0+1m)

S(m) = θ (m0.log1m)

 

Thus,

S(m) = θ(logm)    ……(2)

 

Now,

  • From (1), we have n = 2m.
  • So, logn = mlog2 which implies m = log2n.

 

Substituting in (2), we get-

S(m) = θ(loglog2n)

Or

T(n) = θ (loglog2n)

 

To gain better understanding about Master’s Theorem,

Watch this Video Lecture

 

Next Article- Recursion Tree

 

Get more notes and other study material of Design and Analysis of Algorithms.

Watch video lectures by visiting our YouTube channel LearnVidFun.

Summary
Master Theorem | Master Theorem Examples
Article Name
Master Theorem | Master Theorem Examples
Description
Master Theorem is a popular method for solving the recurrence relations. Master Theorem Examples are discussed. Master Theorem Cases are explained. Problems based on Master Theorem.
Author
Publisher Name
Gate Vidyalay
Publisher Logo

Spread the love